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We formulate dynamical rate equations for physical processes driven by a combination of diffusive growth,
size fragmentation, and fragment coagulation. Initially, we consider processes where coagulation is absent. In
this case we solve the rate equation exactly leading to size distributions of Bessel type which fall off as
exp�−x3/2� for large x values. Moreover, we provide explicit formulas for the expansion coefficients in terms of
Airy functions. Introducing the coagulation term, the full nonlinear model is mapped exactly onto a Riccati
equation that enables us to derive various asymptotic solutions for the distribution function. In particular, we
find a standard exponential decay exp�−x� for large x and observe a crossover from the Bessel function for
intermediate values of x. These findings are checked by numerical simulations, and we find perfect agreement
between the theoretical predictions and numerical results.
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I. INTRODUCTION

Since the pioneering work of von Smoluchowski �1,2�
dating back to the beginning of the last century, the literature
on coagulation and fragmentation processes has grown con-
siderably. von Smoluchowski’s original coagulation equation
�1,2� provides a mean-field description of clusters that coa-
lesce by binary collisions with a constant rate. Scaling theory
and exactly solvable models in the kinetics of irreversible
aggregation have recently been reviewed in �3�.

Fragmentation and coagulation were first considered as
combined processes in �4�, and mean-field-type coagulation-
fragmentation models have subsequently been used in a di-
verse range of applications, including polymer kinetics �5�,
aerosols �6�, cluster formation in astrophysics �7�, and ani-
mal grouping in biology �8,9�. We refer to �10,11� �and ref-
erences therein� for a survey of the progress in the study of
coagulation-fragmentation process.

Recently, we have suggested a mean-field model describ-
ing the dynamics of coherent structures, like ice crystals and
structural elements of biomolecules, which grow or shrink
randomly due to the diffusive motion of their boundaries and
are subject to occasional fragmentation �12,13�. In this paper,
we present an extension of the model to account for coagu-
lation processes as well. The extension can be considered as
a generalization of the von Smoluchowski coagulation-
fragmentation equation to include processes where size dif-
fusion is important. We emphasize that our approach differs
from the approach in, e.g., �14�, where the clusters represent
particles immersed in a gas or liquid type of medium and the
diffusive term added to the coagulation-fragmentation equa-
tion represents the random movement of the center of mass
of each cluster. In contradistinction, we are focusing on sys-
tems where diffusion operates in the size space rather than in
real space.

Diffusive growth processes are encountered in numerous
physical systems. For instance, the process behind grain
growth in ice or metallurgical systems can effectively be
described as a size diffusive process, where the diffusion
constant depends on the surface tension and the mobility of
the grain boundaries �in the absence of extrinsic drag forces
resulting from, e.g., impurities in the material�; see, e.g.,
�12,13,15–18�. Size diffusion also appears in natural con-
junction with convective growth in systems where the clus-
ters in concern are coupled to a medium mediating the addi-
tion or subtraction of monomeric units. Crystal growth
dynamics by reversible solute addition has, for instance,
been considered in �19� in the limit of no coagulation and
fragmentation. The combined process of fragmentation, size
diffusion, and convection has been studied in �20,21� to de-
scribe the abrupt transitions from the growing to the shrink-
ing state of microtubules. In both cases, the effective convec-
tive and diffusive growth can be directly related to the rate
equations for monomer attachment and detachment from and
to the medium �see, e.g., �19��. Finally, structural transitions
in polypeptide systems �22� can be modeled by a continuous
master equation with a size diffusive term representing the
random fluctuations of the ordered-disordered interface �12�.

Although we are not aware of previous work where dif-
fusive growth appears in conjunction with cluster coagula-
tion, we believe—in light of the examples given above—that
such an extension of von Smoluchowski’s original
fragmentation-coagulation model is natural and should find
application in several physical systems. Our aim in this paper
is therefore to elucidate the effect of size diffusion in simple
models of coagulation-fragmentation processes.

To proceed, let N�x , t� denote the number of clusters of
size x at time t. The general form of the coagulation-
fragmentation model then reads �10�

�tN�x,t� = ��tN�coag + ��tN�frag, �1�

where
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��tN�coag =
1

2
�

0

x

K�x − x�,x��N�t,x − x��N�t,x��dx�

− N�t,x��
0

�

K�x,x��N�t,x��dx�

and

��tN�frag = − N�x,t��
0

x

F�x − x�,x��dx�

+ 2�
0

�

F�x,x��N�x + x�,t�dx�.

The microscopic details of a given physical model are em-
bedded in the kernels K�x ,x���0 and F�x ,x���0 �symmet-
ric in x and x�� which represent, respectively, the rate of the
coagulation of two clusters of sizes x and x� into one cluster
of size x+x� and the rate of fragmentation of a cluster of size
x+x� into two clusters of size x and x�. The possible ex-
change of monomeric units with an external medium can be
modeled by adding a convective and diffusive term to the
equation which then reads

�tN�x,t� = − v�x��xN�x,t� + D�x��x
2N�x,t�

+ ��tN�coag + ��tN�frag. �2�

Here, the first term describes the average drift of the cluster
sizes due to monomeric exchange with the medium and the
second term represents the random fluctuations superim-
posed on this drift �size diffusion�. In the following we will
examine analytical and numerical aspects of this equation
with the simple choice of size-independent parameters
D�x�=D, F�x ,x��= f , and K�x ,x��=� and setting v=0. The
model presented in �12,13� for the dynamics of ice crystals
and structural building blocks in biomolecules corresponds
to the case of no coagulation �=0. In these cases the systems
are considered closed, so the v=0 condition follows from
excluding any external driving. When the system is in a so-
lution allowing for the solute-solvent exchange of mono-
meric units �as in, e.g., �19–21�� the v=0 condition corre-
sponds to a situation where the solute �clusters� are in
thermodynamical equilibrium with the solvent. The existence
of steady states in the model with no coagulation has re-
cently been identified for a wider class of fragmentation ker-
nels �23�, where connections to the pure fragmentation equa-
tion �24� and the so-called “shattering” transition �25� related
to the formation of dust particles are further discussed. In the
absence of diffusion, the model has been applied to the ki-
netics of reacting polymers in �26,27�, where the uniqueness
of solutions and convergence to equilibrium in the limit
t→� have been proved. As will be demonstrated, the inclu-
sion of a diffusion term in the equation may lead to solutions
radically different from the ones found in �26,27�.

Our paper is organized as follows. In Sec. II, we derive
the exact solution to the model in the case of no coagulation
�D�0, f �0,�=0�. Sections III and IV are devoted to a dis-
cussion of the expansion coefficients entering this solution.
In particular, we give an explicit formula for the coefficients

in terms of a orthogonal set of Airy functions and discuss
their asymptotic behavior. A moment analysis of the solution
in the large-time limit is carried out in Sec. V. In Sec. VI, we
focus on the full diffusion-coagulation-fragmentation model.
It is shown that the equation can be mapped to a Riccati
equation, and we discuss its solutions in the case of no co-
agulation ��=0, Sec. VII� and no diffusion �D=0, Sec. VIII�.
Here, the solution to the diffusion-fragmentation model
found in Secs. II–V becomes useful to elucidate the structure
of the solutions to the Riccati equation. In Sec. IX we return
to the full diffusion-fragmentation-coagulation model. We
demonstrate that the equation possesses a transition point for
the coagulation term, where the distribution crosses over
from the Bessel behavior found in the pure fragmentation-
diffusion case to an exponential. In the final section, we dis-
cuss two numerical implementations of the model.

II. SOLUTION TO THE FRAGMENTATION-DIFFUSION
EQUATION

In the following three sections, we expand on the results
of a recent Letter �12� on the diffusion-fragmentation equa-
tion. In particular, we shall carefully study the structure of
the analytical solution of the diffusion-fragmentation equa-
tion. We shall derive orthogonality relations of the functions
entering the solution and find the corresponding expansion
coefficients. The general equation we wish to solve has the
form

�tN�x,t� = D�x
2N�x,t� − fxN�x,t� + 2f�

x

�

N�x�,t�dx�,

which is a particular case of Eq. �2� with size-independent
diffusion and fragmentation terms and with no coagulation
��=0�. Below we shall consider the boundary conditions
N�0, t�=0 and N�x , t�→0 for x→� for all times t, including
the initial condition at t=0.

We rescale time and the cluster size

x → x/x0 and t → t/�fx0�−1,

where x0= �D / f�1/3. A subsequent differentiation with respect
to x leads to the equation

�t�xN�x,t� = �x
3N�x,t� − 3N�x,t� − x�xN�x,t� . �3�

It is fairly easy to solve Eq. �3� by separation of variables.
Taking N�x , t�=T�t�X�x� we have

Ṫ�t� = �T�t�, X��x� − 3X�x� − xX��x� = �X��x� , �4�

where � is a separation constant. We shall simplify the nota-
tion by shifting the variable x such that the separation con-
stant gets included, x→x−�. The equation for X can be
solved �with the boundary condition X�x�→0 for x→�� by
means of a Fourier transform, with the result

X�x� =
1

2
�

−�

�

dk k2eikx+ik3/3 � B�x� . �5�

Although x is positive, we need to consider X�x� for negative
values of x in Eq. �8�. By analytical continuation the function
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X�x� is well defined for x�0. The function B is related to the
Airy integral

A�x� �
1

2
�

−�

�

dk eikx+ik3/3 = �
0

�

dk cos�kx +
k3

3
� , �6�

which has been discussed, e.g., in Ref. �28�; see in particular
pp. 188–190. In the panels of Fig. 1 we show B�x� for posi-
tive and negative values of x, respectively.

By differentiating A�x� twice we get

B�x� = − �x
2A�x� . �7�

Collecting the results obtained above and inserting once
again the separation constant, the solution of Eq. �3� can now
be written

N�x,t� = 	
n

Cne�ntB�x + �n� . �8�

In case the eigenvalues �n are in a continuous range the sum
should be replaced by an integral. We shall here impose an
absorbing boundary conditions for small clusters, which im-
plies that the probability of clusters with zero size vanishes
at all times—i.e.,

N�0,t� = 0. �9�

We implement this condition by requiring B��n�=0. Thus the
eigenvalues must be zeros of the function B�x�.

To find possible zeros of B�x� we need some properties of
the functions A�x� and B�x�. It turns out that A�x� can be
expressed in terms of Bessel functions �28� by use of a de-
formation of the contour in Eq. �6�, with the result

A�x� =
x

3
K1/3�2x3/2

3
� for x � 0

=
�

3

�x��J1/3�2�x�3/2

3
� + J−1/3�2�x�3/2

3
�
 for x � 0.

�10�

The absolute signs in the last line should be noticed. The
function A�x� is positive for x�0 and oscillates for x�0,
where it has an infinite number of zeros.

We can now differentiate A�x�, and using well-known
functional relations1 for the Bessel functions �28,29�, one
obtains the result

A��x� = −
x

3

K2/3�2x3/2

3
� for x � 0

=
�

3
x�J−2/3�2�x�3/2

3
� − J2/3�2�x�3/2

3
�
 for x � 0.

�11�

Performing another differentiation gives

A��x� = x
x

3
K1/3�2x3/2

3
� for x � 0

=
�

3
x
− x�J1/3�2�x�3/2

3
� + J−1/3�2�x�3/2

3
�
 for x � 0.

�12�

Comparison with Eq. �10� shows that A�x� satisfies the
simple second-order differential equation found by Stokes
�28�,

�x
2A�x� = xA�x� , �13�

which will play a crucial role in the following. Comparing
this equation to Eq. �7� we see the remarkably simple rela-
tion between B�x� and A�x�,

B�x� = − xA�x� . �14�

From well-known properties of the Bessel functions K
and J we see that the function A�x� has zeros for x=�n�0
with

J1/3�2��n�3/2

3
� + J−1/3�2��n�3/2

3
� = 0. �15�

These zeros can be computed easily numerically. The first
few are given approximately by

�1 = − 2.338, �2 = − 4.088, �3 = − 5.521,

1We use zJ���z�+�J��z�=zJ�−1�z� and zJ���z�−�J��z�=−zJ�+1�z�
and the relations for the K functions, K���z�=−�� /z�K��z�−K�−1�z�
and K��z�=K−��z�.

FIG. 1. The function B�x� �x is dimensionless� and its intersec-
tions with y=0. Note that all intersections appears for x�0 only.
Inset: a close-up of the function for positive x.
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�4 = − 6.787, �5 = − 7.945, �6 = − 9.023. �16�

It should be mentioned that from the asymptotic form of the
Bessel functions the zeros are approximately given by

�n � − �3�

2
�n +

3

4
�
2/3

. �17�

This expression is valid for large n. However, the expression
provides a surprisingly accurate estimate of �n+1 even for
small n’s. For example, for n=0 one finds that Eq. �17� gives
−2.32, as compared to the numerically obtained more accu-
rate value �1=−2.338. For n=3 one obtains �−6.785 to be
compared to the more accurate �4=−6.787.

We now return to the boundary condition �9� which is to
be implemented on the solution �8�. This requires

N�0,t� = 	
n=0

�

CnB��n� = 0. �18�

Taking into account Eq. �14� giving the relation between
A�x� and B�x� as well as expression �10� for A�x�, we thus
see that the �n’s are discrete �since there are only discrete
zeros in the Bessel functions�; they must be negative and
must also satisfy Eq. �15�. However, even though A�0��0, it
follows from Eq. �14� that B�0�=0. Therefore the sum in Eq.
�18� includes n=0 with �0=0.

The solution to Eq. �3� is thus

N�x,t� = C0B�x� + 	
n=1

�

Cne�ntB�x + �n� . �19�

Here we separated the first term explicitly in order to empha-
size that it is time independent. Since the �n’s are negative
for n�0, it follows that after a sufficiently long time the first
term dominates,

N�x,t� → C0B�x� for t → � . �20�

Note that C0�0. In order to use Eq. �19� we need to deter-
mine the constants Cn. This problem will be discussed in the
next section.

III. ORTHOGONALITY

The solution �19� is incomplete as it stands since we need
to determine the expansion coefficients. This problem is re-
lated to orthogonality of the functions entering this solution.
It turns out that the B�x+�n�’s are not orthogonal,2 which is
connected to the fact that the B function satisfies the third-
order differential equation �3�. However, we shall now use
the fact that A�x� satisfies the second-order differential equa-
tion �13�, so we can use standard orthogonality consider-
ations as far as A�x� is concerned. Therefore instead of
N�x , t� we consider the function

M�x,t� = 	
n=0

�

Cne�ntA�x + �n� , �21�

where the constants Cn are the same as in Eq. �8�. The con-
nection between N�x , t� and M�x , t� is given by

�x
2M�x,t� = − N�x,t� �22�

as a consequence of Eq. �7�.
We can now show that the functions A�x+�n� form an

orthogonal set of functions for �n�0. From Eq. �13� we
have

A��x + �n� = �x + �n�A�x + �n� . �23�

This second-order equation allows us to use standard meth-
ods, in contrast to the original third-order equation for
N�x , t�. Thus we obtain

�
0

�

dx�A�x + �m�A��x + �n� − A�x + �n�A��x + �m��

= ��n − �m��
0

�

dxA�x + �n�A�x + �m� . �24�

Following standard procedures we now shift the two differ-
entiations in the first term in the integrand on the left-hand
side by two partial differentiations. In this way the first term
cancels the second, except for contributions from the bound-
aries. For x=� there are no contributions, since the Bessel
function vanishes exponentially. Taking into account the con-
tributions from the lower limit x=0 we have

��n − �m��
0

�

dxA�x + �n�A�x + �m�

= − A��m�A���n� + A���m�A��n� . �25�

However, since �n are the zeros of the function A for n�0,
we have A��m�=A��n�=0. It is important to notice that nei-
ther A�0� nor A��0� vanishes. For n�0 the quantity on the
right-hand side of Eq. �25� vanishes, and hence

��n − �m��
0

�

dxA�x + �n�A�x + �m� = 0 for n and m � 0.

�26�

Thus the set �A�x+�n�� consists of orthogonal functions, ex-
cept for �0=0. It then follows that the expansion coefficients
in Eq. �21� are determined through the equation3 �12,13�

Cm =
1

Im
��

0

�

dx M�x,0�A�x + �m�

− C0�
0

�

ftydxA�x + �m�A�x�
, m � 0, �27�

where

2This can easily be seen in examples by doing the relevant
integrals numerically. Thus, for example, the integral
�0

�dxB�x−2.338�B�x−4.088� has the nonvanishing value −9.102.

3If the initial data are taken to be given at time t0 instead of
t=0, Cm should be replaced by Cme�nt0 and M�x ,0� by M�x , t0� in
Eq. �27�. Similarly, in the solution e�nt is replaced by e�n�t−t0�
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Im = �
0

�

dx A�x + �m�2. �28�

In the next section we shall show the Im can be expressed in
terms of A���n�, which in turn can be expressed in terms of
Bessel functions �28�.

Taking �m=0 we obtain, from Eq. �25�,

�
0

�

dxA�x + �n�A�x� = −
A�0�A���n�

�n
, �29�

which we shall use in the next section.
In expression �27� for Cn the function M�x ,0� enters.

However, the relevant initial function is N�x ,0�. We can re-
express Cm in terms of N�x ,0� by solving Eq. �22� for M in
terms of N. Noticing that the Greens function in one dimen-
sion is 	�x�x, we easily obtain, from Eq. �22�,

M�x,0� = 
 + �x − �
0

x

dx��x − x��N�x�,0� , �30�

where 
 and � are integration constants. It follows from the
definition, Eq. �21�, of M that M�0,0�=C0A�0�, since
A��n�=0 for n�0. Thus 
=C0A�0�.

To find the constant � consider

�xM�x,0��x=0 = � = 	
n=0

�

CnA���n� . �31�

Now from the solution �8� we have, by use of Eq. �7�,

�
0

�

dx N�x,0� = 	
n=0

�

Cn�
0

�

dxB�x + �n�

= − 	
n=0

�

Cn�
0

�

dx�x
2A�x + �n� = 	

0

�

CnA���n� .

�32�

Therefore,

� = �
0

�

dx N�x,0� . �33�

We now insert these results into Eq. �30� which becomes

M�x,0� = − �
0

x

dx �x − x��N�x�,0�

+ x�
0

�

dx� N�x�,0� + C0A�0� . �34�

To proceed we need also to determine C0. We have, by use of
Eqs. �7� and �8�,

�
0

�

dx xN�x,0� = 	
n=0

�

Cn�
0

�

dx xB�x + �n�

= − 	
n=0

�

Cn�
0

�

dxx�x
2A�x + �n� = − C0A�0� ,

�35�

so

C0 = −
1

A�0��0

�

dx xN�x,0�, A�0� =
�

32/3��2/3�
. �36�

Thus C0 is determined in terms of the initial data for N.
We can now insert the result �36� into Eq. �34�,

M�x,0� = �
x

�

dx��x − x��N�x�,0� . �37�

This finally gives an expression for the expansion coeffi-
cients in terms of the initial value for N,

Cm =
1

Im
�

0

�

dx A�x + �m���
x

�

dx��x − x��N�x�,0� − C0A�x�
 ,

�38�

where we inserted the solution �37� of M in terms of N in
expression �27� for Cm. In Fig. 2 we show an example of the
evolution of N�x , t� with the interesting feature of the pres-
ence of a secondary peak. Interchanging the x and x� inte-
grations this expression can be rewritten in a form which is
more suitable for insertions of data for N�x ,0�: namely,

FIG. 2. An example showing the time development of N�x , t� �x
and t are dimensionless� with a secondary peak, which ultimately
disappears. The specific values of the expansion parameters Cn are
�C0 ,C1 ,C2 ,…�= �−7,−0.2,−0.2,0.05,−0.035�.
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Cm =
1

Im
��

0

�

dx N�x,0��
0

x

dx��x� − x�A�x� + �m�

− C0�
0

�

dx A�x + �m�A�x�

=

1

Im
�

0

�

dx N�x,0��A��x + �m� − A���m�

− �x + �m��
0

x

dx� A�x� + �m�

+
x

A�0��0

�

dx� A�x� + �m�A�x��� . �39�

To obtain the last form we used Eq. �7� and inserted C0.
Thus, to sum up the solution of Eq. �54� is given by Eq. �74�,
with B given by Eqs. �10� and �14�, and with Cn given by Eq.
�39�. It should be emphasized that in Eq. �39� the initial
function N�x ,0� enters only in the first integral, whereas the
other integrals involving the function A can be determined
numerically to any desired accuracy.

IV. EXPANSION COEFFICIENTS

In this section we shall examine the expansion coeffi-
cients Cm given by Eqs. �38� and �39�. We start by consider-
ing the normalization integrals Im defined by Eq. �28�. The
differential equation �13� for A�x� , A�=xA, can be rewritten
as 2A�A�−2xAA�−A2=−A2—i.e.,

d

dx
�A��x�2 − xA�x�2� = − A�x�2, �40�

so that the normalization integral becomes

Im = �
�m

�

dxA�x�2 = A���m�2, �41�

where we used that A��m�=0.
We can now express Im in terms of Bessel functions by

differentiating A�x� given in Eq. �10� and using standard
functional relations for the relevant Bessel functions �28,29�.
Using A��x� already evaluated in Eq. �11� we have

Im =
�2

9
�m

2 �J−2/3�2��m�3/2/3� − J2/3�2��m�3/2/3��2. �42�

If we use the well-known asymptotic expansions of the
Bessel functions as well as the asymptotic eigenvalue �17�, it
is easy to see that Eq. �42� becomes

Im � �4/3�3

2
�1/3�m +

3

4
�1/3

, m → � . �43�

We have compared Eq. �43� with the exact expression �42�
even for small m. We find that for m=0 the analytic expres-
sion �42� gives 4.852 85, whereas the approximate result �43�
gives 4.785. For m=4 the corresponding numbers are
8.857 37 and 8.8538. For m�5 one gets the first two deci-
mals right.

The first expression �39� can now be simplified by use of
Eq. �29�,

Cm =
1

A���m�2�
0

�

dxN�x,0��
0

x

dx��x� − x�A�x� + �m�

−
1

�mA���m��0

�

dxxN�x,0�, m � 0. �44�

From the asymptotic statements �17� and �43� we see that the
last term on the right-hand side of Eq. �44� behaves like
m−5/6. However, in the expansion for M this is to be multi-
plied by the oscillating function A�x+�n�. In any case it
should be noticed that if t�0, there is no convergence prob-
lem because the exponential damping factors e�mt give rapid
convergence. Convergence problems in the form of very
slow convergence may arise at the initial time, where the
expansion coefficients are determined in terms of the initial
data.

V. MEAN VALUES

We shall now compute the mean values x̄ and x2, which
turn out to be given by rather simple expressions for large
times. We have

x̄ = �
0

�

dx xN�x,t�/�
0

�

dx N�x,t� ,

x2 = �
0

�

dx x2N�x,t�/�
0

�

dx N�x,t� . �45�

By the methods already used in Eqs. �32� and �35� we obtain

x̄ = − A�0�/�A��0� + �1/C0�	
n=1

�

Cne�ntA���n�� . �46�

We also have by use of Eq. �7� and two partial integrations

�
0

�

dx x2N�x,t� = − 2	
n=0

�

Cne�nt�
0

�

dx A�x + �n� . �47�

In the limit t→� we obtain the simple results

x̄ →
32/3��4/3�

��2/3�
� 1.3717, �48�

as well as

x2 � 2.5758. �49�

Here we used that �0
�dx A�x��1.0472. The relative disper-

sion therefore becomes

D2

x̄2 �
x2 − x̄2

x̄2 � 0.36897 �50�

for t→�. The dispersion is therefore smaller than x̄ , D
�0.607 43x̄.
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VI. TRANSFORMATION OF THE MODEL WITH FINITE
COAGULATION TO A RICCATI EQUATION

In this section we shall discuss the model, Eq. �2�, with
constant diffusion and finite size-independent fragmentation
and coagulation kernels, f �0 and ��0. The basic equation
for the steady-state solution is thus �30�

D�x
2N�x� − fxN�x� + 2f�

x

�

dx�N�x��

+ �/2�
0

x

dx�N�x��N�x − x�� − 2�̃N�x� = 0, �51�

where

�̃ = �/2�
0

�

dxN�x� . �52�

By integrating Eq. �51� we easily get

D�

f2 N��0� =
�

f
�

0

�

dx xN�x� − 2b2 � 0, �53�

where b= �̃ / f represents a new length scale compared to the
one given by the diffusion to fragmentation ratio,
x0= �D / f�1/3, as previously introduced.

Equation �51� is an integro-differential equation. In gen-
eral we would like to solve this equation with the boundary
conditions that N�0�=0 and N�x�→0 for x→�. Further-
more, we need of course also to invoke the condition that
N�x� be positive. This is not automatically guaranteed from
Eq. �51�. We shall see that if diffusion is absent, it is not
possible to achieve N�0�=0. The main result of this section is
that in Fourier space the integro-differential equation �51�
can be mapped onto a Riccati equation or, alternatively, a
linear second-order differential equation. If we can achieve
N�0�=0, we need N��0��0 from positivity of N�x�, and
hence the right-hand side of Eq. �53� must be positive. Since
Eq. �53� is a consequence of Eq. �51�, a solution for the
function N�x� should satisfy Eq. �53� automatically.

In the presence of diffusion, we can make Eq. �51� dimen-
sionless by rescaling the cluster size x→x /x0 as in Sec. II:

�x
2N�x� − xN�x� + 2�

x

�

dx�N�x��

+
�

2fx0
�

0

x

dx�N�x��N�x − x�� −
2b

x0
N�x� = 0. �54�

We now take the Fourier transform

N�x� = �
−�+i�

�+i�

d
 ei
xÑ�
� = e−�x�
−�

�

d
 ei
xÑ�
� ,

�55�

where the convergence factor is needed in the following.
Alternatively we can consider the contour to be shifted
slightly to the upper half plane. We assume that the function

Ñ�
� is continuous as the real axis is approached.

We can now translate Eq. �54� to Fourier space. For ex-
ample, we use

�
x

�

dx�N�x�� = �
−�

�

d
 Ñ�
��
x

�

ei
x�−�x

= i�
−�+i�

�+i�

d

Ñ�
�



ei
x. �56�

Here the convergence factor is of course important. Putting
everything together we obtain, from Eq. �54�,

�
−�+i�

�+i�

d
 ei
xO�
�Ñ�
�

=
�

2fx0
��

−�+i�

�+i�

d
d
�
Ñ�
�Ñ�
��


 − 
�
�ei
x − ei
�x� ,

�57�

where the operator O is given by

O�
� = − 
2 +
2i



−

2b

x0
− i

d

d

. �58�

From this we obtain by an integration over x from 0 to �
with the weight factor exp�−i�x�,

i�
−�+i�

�+i�

d

O�
�Ñ�
�


 − �
=

�

2fx0
F���2, �59�

where F is the Hilbert transform:

F��� = �
−�+i�

�+i�

d

Ñ�
�
� − 


. �60�

Equation �59� can be reformulated as an equation for F. To
do this, we rewrite 
2= �
2−�2�+�2 to obtain4

� d


2Ñ�
�

 − �

=� d
�
 + ��Ñ�
� + �2F���

= − iN��0� + �N�0� + �2F��� . �61�

We want to solve the problem with the boundary condition
N�0�=0, so in the following the linear term on the right-hand
side will be left out. We also have

� d

Ñ�
�


�
 − ��
=

i�̃

��
+

1

�
F��� . �62�

Collecting these results Eq. �59� becomes

4In order to simplify the notation we leave out the limits on the 

integration, always assuming that this integration goes from
−�+ i� to �+ i� in the following.
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�

2fx0
F���2 = −

dF���
d�

+ �2

�
+ i�2 +

2ib

x0
�F��� − N��0� − 2i

�̃

��
.

�63�

This is a standard equation of the Riccati type. It should be
noticed that if there is no diffusion the Riccati equation sim-
plifies to

�

2f
F���2 = −

dF���
d�

+ �2

�
+ 2ib�F��� − 2i

�̃

��
�no diffusion� ,

�64�

where � now has the dimension of length−1.
It is well known that a Riccati equation can be trans-

formed to a linear second-order differential equation by the
substitution

�

2fx0
F��� =

d

d�
ln u��� , �65�

where u satisfies

u���� − �2

�
+ i�2 + 2i

b

x0
�u���� + � �

2fx0
N��0� +

2ib

x0�
�u��� = 0.

�66�

The original Fourier transform �55� was given in terms of

the function Ñ, which in turn is related to the function F by
the Hilbert transform �60�. However, it is well known that
the Fourier transform of a Hilbert transform has a remark-
ably simple property, which in our case �since x�0� leads to

N�x� =
1

2�i
�

−�

�

d�ei�xF��� . �67�

This equation can be derived by noticing that since the 

integration is shifted to slightly above the real axis, we have

F��� = FP��� + i�Ñ���, FP��� = P�
−�

�

d

Ñ�
�
� − 


, �68�

where P means the principal value. Further we have

N�x� =� d
 Ñ�
�ei
x =
1

i�
� d
 Ñ�
�ei
xP�

−�

�

dy
eiyx

y

=
1

i�
� d�ei�xFP��� , �69�

where we used that, for x�0,

P�
−�

�

dy
eiyx

y
= i� �70�

and where we took y=�−
. Using Eq. �68� we obtain Eq.
�67�.

From Eq. �67� we see that the original integro-differential
equation �54� is solved if we can solve the Riccati equation
�63� or, alternatively, the linear second-order differential
equation �66�.

VII. CASE OF NO MERGING

Before we discuss the Riccati equation it is quite instruc-
tive to consider the case of no merging, �=0. In our previous
work we have solved this problem in terms of the Airy func-
tion �12,13� with the result

N�x��=0 = const � �
−�

�

d
 
2ei
3/3+i
x. �71�

This function solves the equation

O�
�Ñ�
� = 0 �72�

subject to the boundary condition that N�x�→0 for x→�,
With the present method we obtain from Eq. �63�, with

�=0,

−
dF���

d�
+ �2

�
+ i�2�F��� − N��0� − 2i

c

�
= 0, �73�

where the constant c is given by c= �̃ /�=�0
�dxN�x�. The

solution is given by

F��� = �2ei�3/3�K −� d�

�2 e−i�3/3�N��0� + 2i
c

�
�
 . �74�

Here K is a constant of integration. Comparing to the correct
result �71� by use of the Fourier transform �67� in terms of F,
we see that the second term in the solution �74� apparently
gives a deviation from Eq. �71�.

The resolution of this paradox is that the last term in Eq.
�74� does not give any contributions to the Fourier integral.
This can be seen by noticing that the indefinite integral in
Eq. �74� can be expressed in terms of the incomplete � func-
tion, and when multiplied by the prefactor �2ei�3/3 it is ana-
lytic in the upper half plane. When we plug the second term
in Eq. �74� into the Fourier integral �67� we can close the
integration by a large circle in the upper half plane. This
circle contributes nothing, since the factor exp�i�x� gives an
exponential damping on the circle and since the behavior of
the second term �including the prefactor� in Eq. �74� is
−iN��0� /�2+O�1/�3� for large �, as can be seen by a partial
integration. This behavior does not compete with the expo-
nential damping. Therefore,

− �2ei�3/3� d�

�2 e−i�3/3�N��0� + 2i
c

�
� �75�

is a null function in the Fourier integral �67�.
The moral of this story is that although the function N�x�

is given by the two integrals �55� and �67�, this does not

mean that the two functions Ñ and F are proportional. They
can differ by a nontrivial null function. As the example given
above shows, we must in general expect the occurrence of
such nontrivial null functions.

Another point which should be mentioned is why the first
term in the solution �74� cannot be treated like the second
term: In the second term the factors exp�±i�3 /3� cancel out,
as one can see by repeated partial integrations of the integral
in the solution �74�. For example, for small � one has
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�2ei�3/3� d�

�3 e−i�3/3 = −
1

2
−

i

2
�2ei�3/3� d� e−i�3/3

= −
1

2
−

i

2
�3 + ¯ . �76�

A similar argument does not apply to the first factor in Eq.
�74� which contains exp�i�3 /3� and does not give conver-
gence on the large circle: This factor overwhelms the damp-
ing from exp�i�x�. Actually the contour can only be be
closed in the upper half plane by two straight lines in the
directions � /6 and 5� /6. The closed contour running along
the real axis from −� to +�, a part of a circle at infinity
going from the angle 0 to � /6 (gives no contribution due to
a damping factor exp�−�
�3sin�3��� , 0���� /6), runs
back to the origin along a straight line, moves to the left
along a line making the angle 5� /6, and is closed by a circle
going towards the real axis �gives no contribution�. On the
straight lines the factor exp�i�3 /3� becomes strongly damped
and behaves like exp�−���3 /3�. Therefore the oscillating inte-
gral �71� can be replaced by the strongly damped integral

N�x��=0 = const � �
0

�

d� �2e−�3/3−�x sin �/6sin��x cos �/6� .

�77�

VIII. CASE OF NO DIFFUSION

We shall now consider the case without diffusion, where
the Riccati equation simplified to Eq. �64� with the corre-
sponding second-order equation

u���� − �2

�
+ 2ib�u���� +

2ib

�
u��� = 0. �78�

This equation can be solved in terms of Bessel functions,

u��� = k�3/2eib��J−3/2�− b�� + CN−3/2�− b��� , �79�

where k and C are constants. These Bessel functions can be
expressed in terms of trigonometric functions,

J−3/2�− b�� = ± i
 2

��b
�sin�b�� +

cos��b�
b�

� ,

N−3/2�− b�� = ± i
 2

��b
�cos�b�� −

sin��b�
b�

� . �80�

For the function F we then get

F��� = ib
2f

�

�1 + b��C − i��cos�b�� − �C − b��1 + iC��sin�b��
�1 + Cb��cos�b�� + �b� − C�sin�b��

,

�81�

where C is a constant of integration. Since F is given by a
Hilbert transform, we see that, for �→�,

F��� →
1

�
� d
Ñ�
� =

1

�
N�0� , �82�

with correction terms starting with −iN��0� /�2. Thus, if
N�0�=0, we have that F behaves like 1/�2. Going back to the

solution �81�, we see that it is only possible to let F go like
1/�, which fixes the integration constant to be C= i. Then,

F��� =
2f

�

ib

1 + ib�
. �83�

We can now perform the Fourier transform �67� by means of
Cauchy’s theorem, and we obtain

N�x� =
2f

�
e−x/b. �84�

It is easily verified that this function satisfies the original
integro-differential equation �54� without the diffusion term.
The solution is identical to the one found in �27� by noticing
that in the case of no diffusion b can be expressed in terms of
the total “mass” M =�0

�dxxN�x� from Eq. �53� as b
=
� / �2f�M. Clearly, this solution does not satisfy N�0�=0.
Instead there is a piling up at x=0 given by the ratio of
fragmentation versus merging. The more fragmentation one
has, the more piling up comes about for small x. Also, the
more merging one has, the less piling up at small x. These
results are of course physically reasonable.

IX. EFFECT OF DIFFUSION

If diffusion is included, it will have the profound effect
that it is possible to enforce the boundary condition N�0�
=0. We then have to consider the full Riccati equation �63�.
Unfortunately we have not been able to solve this equation
exactly, in contrast to the no-diffusion case considered in the
last section. Therefore we need to find an approximate solu-
tion valid in different � ranges. In this connection it should
be pointed out that if F��� is �i� analytic in the upper half
plane and �ii� grows less than exponential on a large semi-
circle in the upper half plane, then there is only the trivial
solution N�x�=0. This simply follows by the use of Eq. �67�
by closing the contour in the upper half plane at no price,
since there is an exponential damping from the factor
exp�ix�� due to �ii�. Application of Cauchy’s theorem then
gives the trivial result, since no singularities are included
inside this contour, due to �i�. Therefore, to have a nontrivial
approximate solution at least one of the two conditions �i�
and �ii� must be violated.

To see that the boundary condition N�0�=0 is possible
when diffusion is included, we notice that for large � the
linear second-order equation �66� has the solution

u��� � const � �1 +
i�

2fx0�
N��0� + O�1/�2��, i.e.,

ln u��� � const +
i�

2fx0�
N��0� + O�1/�2� , �85�

which comes as a cancellation of the diffusive terms
−i�2u���� and +�� /2fx0�N��0�. Using Eq. �65� we have
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N�0� =
1

2�i
�

−�

�

d�F��� =
2fx0

�

1

2�i
�

−�

�

d�
d

d�
ln u���

=
2fx0

�
�ln u����−�

� = 0. �86�

It should be noticed that in the case of no diffusion
the asymptotic behavior of u��� is different, u���
�const+O�ln ��.

We shall now show that if one has an approximate pole
behavior of F��� this represents a saddle point in the Fourier
integral �67�. This is important, since we cannot directly use
Cauchy’s theorem to perform the integral if the solution is
only approximate and dominates only near a pole �0. From
the Fourier integral we see that there is a stationary phase �or
saddle point� when

ix� − ln�� − �0� �87�

is stationary, which happens for

ix −
1

� − �0
= 0, i . e . , � = �0 +

1

ix
. �88�

Also, the second derivative of the phase −x2 /4 is negative, so
the saddle point is stable. The value of N�x� in this saddle
point is

N�x� � const � 	 ei�0x, �89�

where we should sum over all relevant �0’s subject to the
condition that N�x� be finite and positive.

We shall now investigate the possibility that there exists a
pole for small values of �. To this end we shall use that from
Eq. �65� a pole in F��� can show up as a zero in the function
u���, which satisfies the linear second-order equation �66�.
Let us tentatively assume that this pole occurs for small val-
ues of �, so that we can expand

u��� � 1 + c1� + c2�2 + ¯ , �90�

where the first constant is taken to be 1, since the overall
scale of u��� is irrelevant for F���. From Eq. �66� we then
obtain

u��� � 1 + i
b

x0
� +

�

2x0f
N��0��2 + ¯ . �91�

There is indeed a pole u��0��0,

�0 =
i

�/�fx0�N��0�
�
�b/x0�2 + 2�/�fx0�N��0� − b/x0� ,

�92�

where we took the root which leads to a finite result for N�x�
by use of Eq. �89�. Using Eq. �53� this can be written

�0 =
i

�x� − b/x0
�
2�x�

b/x0
− 1 − 1� . �93�

It is clear that this result is only valid provided ��0� is small,
since otherwise more terms should be included in the expan-
sion �90�

Now the question naturally appears as to whether there
are other saddle points relevant when � is large? In general,
the saddle points are in the complex � plane, as we saw in the
pole case discussed above, where �0 is imaginary. In this
connection we remind the reader that in the case of no merg-
ing, we obtained as a solution an oscillating integral �71�,
which could be turned into an integral �77� which is damped
at large � by deforming the contour. On the deformed con-
tour the Fourier transform is thus small for large �. Moti-
vated by these considerations we ask if there exists an ap-
proximate solution of the Riccati equation �63� where F is
small. In this case we can ignore the quadratic term, and the
equation reduces to

−
dF���

d�
+ �2

�
+ i�2 +

2ib

x0
�F��� − N��0� − 2i

�̃

��
� 0.

�94�

We see that except for the term �2ib /x0�F��� the equation is
the same as the equation with no merging, Eq. �73�, and the
solution is the same as Eq. �74�, except for a contribution
exp�2ib /x0��. Again there is a null function with respect to
the Fourier integral �67�, similar to the one that occurs in Eq.
�74�. Ignoring the null function we have

F��� � const � �2e�i/3��3+�2ib/x0��. �95�

Along the contour forming angles � /6 and 5� /6 with the
real axis this function is small for large values of �. The
expression for N�x� is then

N�x� � const � �
−�

�

d��2e�i/3��3+�2ib/x0��+ix�. �96�

For large x this leads to a saddle point in the Fourier trans-
form �67� well known from the theory of Airy functions. It
occurs at �= i
x and is stable,

N�x� � const � x3/4e�−2/3�x3/2−�2b/x0�x1/2
. �97�

To conclude this discussion, we see that there are in prin-
ciple two saddle points �at least, there may be others that we
have overlooked�. The one given by the slope �93� always
dominates, because it decays exponentially in contrast to Eq.
�97�. However, there may be a transitory region for large, but
not too large x, where the behavior is given by Eq. �97�, but
for very large x the behavior is always dominated by the
slope �93�. If the slope �93� increases to around 1, expression
�93� is no longer expected to be valid, since more terms
would be needed in the expansion �90�.

X. NUMERICAL RESULTS

The most direct way of validating the theoretical predic-
tions presented in the preceding section is to integrate Eq.
�51� numerically. Inevitably, a numerical approach implies
that the domain of the function N�x� will be restricted to a
finite set of natural numbers X= �0,1 ,… ,L�. Here, we must
ensure that L is chosen sufficiently large to suppress finite-
size effects and that X is sufficiently “dense” to give a proper
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representation of the continuous function N. The second re-
quirement is satisfied by rescaling the diffusion to fragmen-
tation ratio so that x0

−1= �D / f�−1/3�1. Consequently, L must
be chosen such that L /x0�1. As we have seen, the other
relevant length scale is set by the coagulation to fragmenta-
tion ratio b= �� /2f��0

�N�x�. Since diffusion processes will
always be dominating for small values of x, this length scale
only plays a part in setting the upper limit—i.e., L /b�1.
The most important concern in choosing L comes from the
problem of ensuring the mass conservation of Eq. �51�,
�t�0

�dxN�x , t�x=0. The proper discretized version of the frag-
mentation and coagulation operators that entails mass con-
servation in the finite domain X reads

��tN�frag → ��tÑ�frag = − f�x̃ − 1�Ñ�x̃� + 2f 	
x̃�=x̃+1

L

Ñ�x̃��

�98�

and

��tN�coag → ��tÑ�coag

= �/2 	
x̃�=0

x̃−1

Ñ�x̃��Ñ�x̃ − x̃�� − �Ñ�x̃� 	
x̃�=0

L−x̃

Ñ�x̃�� , �99�

where Ñ represents the discretized function. The discrete La-
placian

�x
2N�x� → �2Ñ�x̃�

= �Ñ�1� − 2Ñ�0� for x̃ = 0,

Ñ�x̃ + 1� + Ñ�x̃ − 1� − 2Ñ�x̃� for 0 � x̃ � L ,

Ñ�L − 1� − 2Ñ�L� for x̃ = L ,
�

�100�

however, will always lead to a net loss of the total mass,
since

	
x̃=0

L

x̃�2Ñ�x̃� = − �L + 1�Ñ�L� . �101�

Here, we take the simplest approach of setting L so that the
relative loss of mass will be small in each time step—i.e.,

LÑ�L��	x̃=0
L x̃Ñ�x̃�. Since for all parameters of b /x0 we ex-

pect the distributions to display an exponential decay �at
least�, the mass loss will automatically be small when
L /x0�1 and L /b�1. In the following we present results
using x0�50 and L=1000 for values of b /x0�2 and
L=10 000 for b /x0�2. The discretized equation

�tÑ�x̃� = �2Ñ�x̃� + ��tÑ�frag + ��tÑ�coag �102�

is solved using a fourth-order Runge-Kutta integration
scheme with variable time step �30,31�. Convergence is ob-
tained by requiring that the relative change �N of the total

counts, N=	x=0
L Ñ�x�, during a time interval of �t=1 satisfy

�N /N�10−6. For all calculations the time-integrated mass

loss is less than 0.1% compared to the mass of the initial
distribution.

In Fig. 3 we show N�x�= Ñ�x̃� as a function of x= x̃ /x0 for
different values of b /x0. For small values of b /x0, one indeed
observes a crossover from the functional form, Eq. �97�, at
intermediate values of x to a pure exponential for large val-
ues of x. At larger values of b /x0, only a single-exponential
form is observed for x�1.

In Fig. 4 we show the slope Im��0� of the exponential tail
of the distributions as function of b /x0. The full curve is
expression �93�, whereas the square diamonds are the slopes
obtained from an exponential fit to the tail of the numerical
solutions for different values of b /x0. For Im��0��1, which
corresponds to values where the coagulation to fragmenta-
tion ratio is the dominant length scale, b�x0, we find perfect
agreement between the theoretical predictions and the nu-
merical results.

We shall now use a simple one-dimensional lattice model
as an alternative approach to put the aforementioned theory
to a test. We pick a finite lattice of length L and impose

FIG. 3. The numerical steady-state distributions N�x� as a func-
tion of x �both quantities dimensionless� for different coagulation-
to-fragmentation ratios b /x0.

FIG. 4. The slope Im��0� �dimensionless� of the exponential tail
of N�x� as a function of b /x0. The solid line is the theoretical pre-
diction, Eq. �93�, and the square diamonds are the numerical results.
One observes a perfect agreement for all Im��0��1.
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periodic boundary conditions. On the lattice we initially dis-
tribute a set of N clusters of sizes ��i�i=1

N and with a total
mass chosen to fit the lattice length, 	i�i=L. We define the
cluster boundaries by a new set �xi�i=1

N such that �i=xi−xi−1
�with x0=xN−L�. The diffusion process of Eq. �51� corre-
sponds in the lattice model to a random walk of the bound-
aries, and therefore in each time step we update the boundary
positions according to xi�t+1�=xi�t�±1. Here the lattice
spacing and time steps, as well as the diffusion constant, are
chosen to be unity. A fragmentation event is simulated by
introducing a new random walker or boundary x̃ on the lat-
tice. The position of x̃ is picked uniformly among the L−N
available lattice sites. Effectively, we therefore get a constant
fragmentation rate given by f =n /L, where n is the number of
new boundaries introduced in each time step. Finally, the
coagulation process is similar to the removal of boundaries.
In each time step a random walker is removed with a prob-

ability �. Note that � is equivalent to the rate �̃=�N intro-
duced in Eq. �52�. The equivalence follows by comparing the
number of events where a cluster of size x coagulates with a
cluster of size y. In the lattice model, the number of events in
a unit time is N��N�x� /N�N�y� /N, which should be com-
pared with the corresponding number in Eq. �51�, and thus
we get � /N=�. In order to minimize the effect of the under-
lying lattice it is important to keep the total mass or lattice
length L of the system much larger than any other scale in

the system—i.e., L� �D / f�1/3 and L��̃ / f . Figure 5 presents
estimates of Eq. �93� based on the lattice model with a lattice

size L=107. We collect the simulation data in a histogram
with a unit bin size and then fit the exponent of the tail. The
maximum count in any bin is for reasonable amounts of
computer time limited above by 108; thus, we have a bound
on the maximum exponent that is possible to estimate and
we have an explanation why the lattice simulations provide
poor estimates in Fig. 5 for low values of b.

Compared to the direct numerical integration there are
both advantages and disadvantages. First of all the lattice
model is extremely simple from a computational point of
view and does by construction conserve the total mass.
Moreover, the model reproduces to high accuracy, using little
computer time, the theoretical predictions for large values of
b /x0, which is in contrast to the larger computational power
needed in the direct numerical integration. Note that in the
lattice model there is a weak size correlation between neigh-
boring clusters. The diffusion makes some clusters large at
the cost of the surrounding ones. The correlation is not
present in the mean-field equation �51�, and it may be
avoided on the lattice by shuffling in each time step the
clusters. By implementing this shuffling in the numerical
routine, it however turns out that the correlation has negli-
gible or no effect on the cluster size distribution.

XI. CONCLUSION

In this paper, we have introduced a model which includes
the three fundamental physical processes: diffusion, frag-
mentation, and coagulation. The model is formulated as a
dynamical equation in terms of the distribution N�x , t� of
fragment sizes x. The main results of the paper are the fol-
lowing: In the case of no coagulation term, we obtain an
exact solution for the distribution of the Bessel type
exp�− 2

3x3/2�. When the coagulation terms is added, we show
that the nonlinear equation can be mapped exactly onto a
Riccati equation. From solution of this equation we obtain
that the distribution now turns into a pure exponential for
large x. When the coagulation process is small as compared
to the fragmentation process, we identify directly that the
distribution N�x� behaves as the Bessel function for small x
after which it crosses over to an exponential at a specific
value of x.

We believe that our proposed model is relevant in many
physical situations, such as for solutions of macromolecules
like polymers, proteins, and micelles. In fact, from measured
distributions of fragment sizes we suggest that one might be
able to identify how important the coagulation process is
compared to the fragmentation process. We are in the process
of collecting experimental data for such investigations.
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